C bitfields considered harmful

In C (and C++) you can specify that a variable should take a specific number of bits of storage by doing “uint32_t foo:4;” rather than just “uint32_t foo”. In this example, the former uses 4 bits while the latter uses 32bits. This can be useful to pack many bit fields together.

Or, that’s what they’d like you to think.

In reality, the C spec allows the compiler to do just about anything it wants with these bitfields – which usually means it’s something you didn’t expect.

For a start, in a struct -e.g. “struct foo { uint32_t foo:4; uint32_t blah; uint32_t blergh:20; }” the compiler could go and combine foo and blergh into a single uint32_t and place it somewhere… or it could not. In this case, sizeof(struct foo) isn’t defined and may vary based on compiler, platform, compiler version, phases of the moon or if you’ve washed your hands recently.

Where this can get interesting is in network protocols (OMG DO NOT DO IT), APIs (OMG DO NOT DO IT), protecting different parts of a struct with different mutexes (EEP, don’t do it!) and performance.

I recently filed MySQL bug 74831 which relates to InnoDB performance on POWER8. InnoDB uses C bitfields which are themselves bitfields (urgh) for things like “flag to say if this table is compressed”. At various parts of the code, this flag is checked.

When you apply this simple patch:

--- mysql-5.7.5-m15.orig/storage/innobase/include/dict0mem.h
+++ mysql-5.7.5-m15/storage/innobase/include/dict0mem.h
@@ -1081,7 +1081,7 @@ struct dict_table_t {
        Use DICT_TF_GET_COMPACT(), DICT_TF_GET_ZIP_SSIZE(),
        DICT_TF_HAS_ATOMIC_BLOBS() and DICT_TF_HAS_DATA_DIR() to parse this
        flag. */
-       unsigned                                flags:DICT_TF_BITS;
+       unsigned                                flags;

I get 10,000 key lookups/sec more than without it!

Why is this? If you go and read the bug, you’ll see that the amount of CPU time spent on the instruction checking the bit flag is actually about the same… and this puzzled me for a while. That is, until Anton reminded me that the PMU can be approximate and perhaps I should look at the loads.

Sure enough, the major difference is that with the bitfield in place (i.e. MySQL 5.7.5 as it stands today), there is a ld instruction doing the load – which is a 64bit load. In my patched version, it’s a lwx instruction – which is a 32bit load.

So, basically, we were loading 8 bytes instead of 4 every time we were checking if it was a compressed table.

So, along with yesterday’s lesson of never, ever, ever use volatile, today’s lesson is never, ever, ever use bitfields.

volatile considered harmful

While playing with MySQL 5.7.5 on POWER8, I came across a rather interesting bug (74775 – and this is not the only one… I think I have a decent amount of auditing and patching to do now) which made me want to write a bit on memory barriers and the volatile keyword.

Memory barriers are hard.

Like, super hard. It’s the kind of thing that makes you curse hardware designers, probably because they’re not magically solving all your problems for you. Basically, as you get more CPU cores and each of them have caches, it gets more expensive to keep everything in sync. It’s quite obvious that with *ahem* an eventually consistent model, you could save a bunch of time and effort at the expense of shifting some complexity into software.

Those in the MySQL world should recognize this – we’ve been dealing with asynchronous replication for well over a decade as a good way to scale.

On some CPU architectures (POWER for example) not all loads are created equal. When you load a value from memory, it will be consistent with your thread of execution. That is, with any stores that you have done in this thread of execution. If another thread updates that memory location you may not see that update even if your load occurs after that thread updates that memory location. Think eventually consistent.

If you want up to date reads (and not clobber writes), then you get to do memory barriers! (a topic for elsewhere – the PowerISA document has good explanations of what we have on POWER though, and how load with reserve works).

What the volatile keyword does is generate load and store instructions. It is useful when talking to hardware, as the load and store instructions are actually doing something there that the compiler doesn’t know about and thus shouldn’t optimize away.

The volatile keyword does not add any memory barriers. This is important to realize – volatile just makes loads and stores happen for your thread, not in relation to any other threads of execution. Thus, you cannot use volatile as a thread synchronization mechanism at all. It is completely and totally wrong.

Basically, if you have a volatile variable and you do stores to it in one thread and loads in another, after the store happens, it could be quite a long time before the thread doing the loads sees it! For some applications this may be okay (although I can’t really think of any beyond very very inaccurate status variables)… but if it matters at all for application correctness, volatile is the wrong thing to use.

Further reading:

Preliminary MySQL Cluster benchmark results on POWER8

Yesterday, I got the basics going for MySQL Cluster on POWER. Today, I finished up a couple more patches to improve performance and ran some benchmarks.

This is on a 3.7Ghz POWER8 machine with non-balanced memory (only 2 of the 4 NUMA nodes have memory, so we have less total memory bandwidth than we could have, plus I’m going to bind ndbmtd to the CPUs in these NUMA nodes)

With a setup of a single replica and two data nodes on the one machine (each bound to a specific NUMA node), running the flexAsync benchmark on MySQL Cluster 7.3.7, I could get around:

  • 3.2 million reads/sec
  • 2.6 million deletes/sec
  • 2.4 million updates/sec
  • 2.4 million inserts/sec.

So, that’s at least in the right ballpark for a first go.

(I’m running this on a big endian host kernel, some random kernel I booted on the box and built with gcc 4.8 with whatever build options the MySQL Cluster cmake foo chooses by default)

MySQL Cluster on POWER8

So, I’ve written previously on MySQL on POWER, and today is a quick bit of news about MySQL Cluster on POWER – specifically MySQL Cluster 7.3.7.

I ran into three main issues in getting some flexAsync benchmark results. One of them was the fact that I wanted to do this in the middle of all the POWER8 machines I usually use moving buildings (hard to run benchmarks when computers are packed up in boxes on a truck).

The next issue was that ndbmtd (the multi-threaded data node) needs memory barriers for the magic message passing stuff between threads. So, that’s pretty easy (about an eight line patch).

The next issue was in the results from flexAsync, it turns out 32bit math is a bad idea with results from my POWER8 box.

My preliminary performance numbers are fairly promising (actually… what is the world record for a single machine and NDB these days? Single data node?). I think there’s a bit more low hanging fruit and a couple more things that are a bit more involved.

Bugs with patches:

  • Bug 74782 – compile fix (memory barriers for POWER)
  • Bug 74781 – flexAsync uses 32bit math, leading to incorrect summary on POWER8